INTRODUCTION

This module provides experiences that help students develop an understanding of how to observe and manipulate sound and light. They explore these dimensions of the natural world using simple tools and musical instruments.

Students learn that sound comes from vibrating objects. They explore how to change sound volume and pitch, and develop simple models for how sound travels from a source to a receiver. With light, students also work with sources and receivers. They find out what happens when materials with different properties are placed in a beam of light, and explore how to create and change shadows and reflections. Students explore how to use sound and light devices to communicate information and compare the ways that animals use their senses (ears and eyes) to gather information about their environment.

Throughout the Sound and Light Module, students engage in science and engineering practices by collecting data and designing and using tools to solve problems and answer questions. Students gain experiences that contribute to their understanding of the crosscutting concepts: patterns; cause and effect; and systems and system models.
Module Summary

Inv. 1: Sound and Vibrations

Students explore the production of sound with a table fiddle, tuning forks, a tone generator, cups, sticks, and rubber bands. Students look for vibrations at the sound source and come up with words to describe different sounds. They learn how to discriminate between different kinds of sounds and what information sounds convey. Students find out about sounds that different animals make.

<table>
<thead>
<tr>
<th>Focus Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>What causes sound?</td>
</tr>
<tr>
<td>What kinds of sounds are easy to identify?</td>
</tr>
<tr>
<td>What information does sound give us?</td>
</tr>
</tbody>
</table>

Inv. 2: Changing Sound

Students use simple instruments (xylophone, one-string guitar) to investigate how to change the volume of sound (loud and soft) and the pitch of sound (high and low). Using a spoon gong, students develop a model of how sound travels from a source to a receiver. They redesign the spoon gong to make a device to both send and receive sound. Students learn about sound receivers used by different animals.

<table>
<thead>
<tr>
<th>Focus Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>How can we make loud and soft sounds?</td>
</tr>
<tr>
<td>How can we make low-pitched and high-pitched sounds?</td>
</tr>
<tr>
<td>How does sound travel from the source to the receiver?</td>
</tr>
<tr>
<td>How can we use sound to communicate over long distances?</td>
</tr>
</tbody>
</table>

Inv. 3: Light and Shadows

Students use flashlights, sunlight, and solid materials that block light to create and change shadows. Students investigate how light interacts with objects that are transparent, translucent, and opaque.

<table>
<thead>
<tr>
<th>Focus Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>What makes a shadow?</td>
</tr>
<tr>
<td>How can we use the Sun to create shadows?</td>
</tr>
<tr>
<td>What happens when different materials block light?</td>
</tr>
</tbody>
</table>

Inv. 4: Light and Mirrors

Students position mirrors to reflect images so they can see their own eyes and view objects behind them. They investigate how to use one and two mirrors to direct light to different locations. They experience what they can see when there is no light, and learn that objects can be seen only when light is available. They explore the shapes and location of eyes on different animals. Students read about devices that use light to communicate information.

<table>
<thead>
<tr>
<th>Focus Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>How can we redirect a light beam?</td>
</tr>
<tr>
<td>What can we see with a mirror?</td>
</tr>
<tr>
<td>What can be seen with no light?</td>
</tr>
<tr>
<td>How can we communicate with light?</td>
</tr>
</tbody>
</table>
Module Matrix

Content Related to Disciplinary Core Ideas

| Vibration is a rapid back-and-forth motion. |
| Vibrating objects make sound; a sound always comes from a vibrating source. |
| Sounds can make objects vibrate. |
| Sound sources can be natural or human-made. |
| Ears are one kind of sound receiver. |
| Sounds can convey information. |

- **Science Resources Book**
 - "Vibrations and Sound"
 - "Listen to This"

- **Online Activity**
 - "Sorting Sounds"

- **Assessment**
 - **Embedded Assessment**
 - Performance assessment
 - Science notebook entry
 - **Benchmark Assessment**
 - Investigation 1 I-Check
 - **NGSS Performance Expectation**
 - 1-PS4-1

| Light travels from a source in all directions. |
| Sound vibrations travel from a source through a medium (matter) to reach a receiver (ear). |
| Volume is how loud or soft a sound is. |
| Pitch is how high or low a sound is. |
| High-pitched sounds come from sources that vibrate quickly. |
| Large objects tend to vibrate slower than small objects. |

- **Science Resources Book**
 - "Animal Ears and Hearing"
 - "Strings in Motion"
 - "More Musical Instruments"

- **Video**
 - "All about Sound"

- **Assessment**
 - **Embedded Assessment**
 - Science notebook entry
 - Performance assessment
 - **Benchmark Assessment**
 - Investigation 2 I-Check
 - **NGSS Performance Expectations**
 - 1-PS4-1; 1-PS4-4; 1-LS1-1
 - K–2 ETS1-1, K–2 ETS1-2

| Light sources are objects or systems that radiate, such as lamps, flashlights, candles, and the Sun. |
| Light travels from a source in all directions. |
| Shadows are the dark areas that result when light is blocked. |
| Some materials block light entirely or partially; other materials allow light to travel through. |
| The length and direction of a shadow depends on the position of the light source. |

- **Science Resources Book**
 - "Playing in Light"

- **Videos**
 - "Light and Shadows"
 - "All about Light"
 - "My Shadow"

- **Assessment**
 - **Embedded Assessment**
 - Science notebook entry
 - Performance assessment
 - **Benchmark Assessment**
 - Investigation 3 I-Check
 - **NGSS Performance Expectation**
 - 1-PS4-3

| Light travels in straight lines. A mirror can be used to redirect light. |
| Mirror images are the result of light reflected from a surface. An image produced by something that reflects, such as a mirror, is always reversed. |
| Light is necessary for animals to see. |
| Animal eyes are not all the same. |
| Light can be used to communicate over long distances. |

- **Science Resources Book**
 - "Reflections"
 - "Seeing the Light"
 - "Communicating with Light"

- **Video**
 - "Light and Darkness"

- **Assessment**
 - **Embedded Assessment**
 - Performance assessment
 - Science notebook entry
 - **Benchmark Assessment**
 - Investigation 4 I-Check
 - **NGSS Performance Expectations**
 - 1-PS4-2; 1-PS4-3; 1-PS4-4
 - K–2 ETS1-1; K–2 ETS1-2;
 - K–2 ETS1-3
FOSS COMPONENTS

Teacher Toolkit for Each Module

The FOSS Next Generation Program has three modules for grade 1—Sound and Light, Air and Weather, and Plants and Animals.

Each module comes with a Teacher Toolkit for that module. The Teacher Toolkit is the most important part of the FOSS Program. It is here that all the wisdom and experience contributed by hundreds of educators has been assembled. Everything we know about the content of the module, how to teach the subject, and the resources that will assist the effort are presented here. Each toolkit has three parts.

Investigations Guide. This spiral-bound document contains these chapters.

- Overview
- Framework and NGSS
- Materials
- Technology
- Investigations (four in this module)
- Assessment

FOSS Science Resources book. One copy of the student book of readings is included in the Teacher Toolkit.
Teacher Resources. These chapters can be downloaded from FOSSweb and are also in the bound *Teacher Resources* book.

- FOSS Program Goals
- Science Notebooks in Grades K–2
- Science-Centered Language Development
- FOSS and Common Core ELA—Grade 1
- FOSS and Common Core Math—Grade 1
- Taking FOSS Outdoors
- Science Notebook Masters
- Teacher Masters
- Assessment Masters

Equipment Kit for Each Module or Grade Level

The FOSS Program provides the materials needed for the investigations, including metric measuring tools, in sturdy, front-opening drawer-and-sleeve cabinets. Inside, you will find high-quality materials packaged for a class of 32 students. Consumable materials are supplied for three uses before you need to resupply. Teachers may be asked to supply small quantities of common classroom items.
FOSS Science Resources Books

FOSS Science Resources: Sound and Light is a book of original readings developed to accompany this module. The readings are referred to as articles in Investigations Guide. Students read the articles in the book as they progress through the module. The articles cover specific concepts, usually after the concepts have been introduced in the active investigation.

The articles in Science Resources and the discussion questions provided in Investigations Guide help students make connections to the science concepts introduced and explored during the active investigations. Concept development is most effective when students are allowed to experience organisms, objects, and phenomena firsthand before engaging the concepts in text. The text and illustrations help make connections between what students experience concretely and the ideas that explain their observations.

NOTE

FOSS Science Resources: Sound and Light is also provided as a big book in the equipment kit.

Playing in the Light

This boy has a shadow.
Look at the shadow.
Does it show what the boy is doing?

What do you see in this picture?
A girl on a swing?
Where is the girl?
Technology

The FOSS website opens new horizons for educators, students, and families, in the classroom or at home. Each module has digital resources and online activities for students and families. For teachers, FOSSweb provides resources for materials management, general teaching tools for FOSS, purchasing links, contact information for the FOSS Program, and technical support. You do not need an account to view this general FOSS Program information. In addition to the general information, FOSSweb provides digital access to PDF versions of the Teacher Resources component of the Teacher Toolkit and digital-only resources that supplement the print and kit materials.

Additional resources are available to support FOSS teachers. With an educator account, you can customize your homepage, set up easy access to the digital components of the modules you teach, and create class pages for your students with access to student tutorials and online assessments.

Ongoing Professional Learning

The Lawrence Hall of Science and Delta Education strive to develop long-term partnerships with districts and teachers through thoughtful planning, effective implementation, and ongoing teacher support. FOSS has a strong network of consultants who have rich and experienced backgrounds in diverse educational settings using FOSS.

NOTE

To access all the teacher resources and to set up customized pages for teaching FOSS, log in to FOSSweb through an educator account. See the Technology chapter in this guide for more specifics.

NOTE

Look for professional development opportunities and online teaching resources on www.FOSSweb.com.
FOSS INSTRUCTIONAL DESIGN

FOSS is designed around active investigations that provide engagement with science concepts and science and engineering practices. Surrounding and supporting those firsthand investigations are a wide range of experiences that help build student understanding of core science concepts and deepen scientific habits of mind.

The Elements of Active Investigation

- Using Formative Assessment
- Integrating Science Notebooks
- Taking FOSS Outdoors
- Engaging in Science–Centered Language Development
- Accessing Technology
- Reading FOSS Science Resources Books
Each FOSS investigation follows a similar design to provide multiple exposures to science concepts. The design includes these pedagogies.

- Active investigation, firsthand experiences with objects, organisms, and materials in the natural and designed worlds
- Recording in science notebooks to answer the focus question
- Reading in *FOSS Science Resources* books
- Online activities to review or extend the investigation
- Outdoor experiences to collect data from the local environment or apply knowledge
- Assessment to monitor progress and motivate student learning

In practice, these components are seamlessly integrated into a curriculum designed to maximize every student’s opportunity to learn. An instructional sequence may move from one pedagogy to another and back again to ensure adequate coverage of a concept.

A **learning cycle** is an instructional model based on a constructivist perspective that calls on students to be actively involved in their own learning. The model systematically describes both teacher and learner behaviors in a systematic approach to science instruction.

The most recent model is a series of five phases of intellectual involvement known as the 5Es: Engage, Explore, Explain, Elaborate, and Evaluate. The body of foundational knowledge that informs contemporary learning-cycle thinking has been incorporated seamlessly and invisibly into the FOSS curriculum design.
Active Investigation

Active investigation is a master pedagogy. Embedded within active learning are a number of pedagogical elements and practices that keep active investigation vigorous and productive. The enterprise of active investigation includes

- **context**: questioning and planning;
- **activity**: doing and observing;
- **data management**: recording, organizing, and processing;
- **analysis**: discussing and writing explanations.

Context: questioning and planning

Active investigation requires focus. The context of an inquiry can be established with a focus question or challenge from you or, in some cases, from students. (What makes a shadow?) At other times, students are asked to plan a method for investigation. This might start with a teacher demonstration or presentation. Then you challenge students to plan an investigation, such as to find out how different materials block light. In either case, the field available for thought and interaction is limited. This clarification of context and purpose results in a more productive investigation.

Activity: doing and observing

In the practice of science, scientists put things together and take things apart, observe systems and interactions, and conduct experiments. This is the core of science—active, firsthand experience with objects, organisms, materials, and systems in the natural world. In FOSS, students engage in the same processes. Students often conduct investigations in collaborative groups of four, with each student taking a role to contribute to the effort.

The active investigations in FOSS are cohesive, and build on each other to lead students to a comprehensive understanding of concepts. Through investigations and readings, students gather meaningful data.

Data management: recording, organizing, and processing

Data accrue from observation, both direct (through the senses) and indirect (mediated by instrumentation). Data are the raw material from which scientific knowledge and meaning are synthesized. During and after work with materials, students record data in their science notebooks. Data recording is the first of several kinds of student writing.

Students then organize data so they will be easier to think about. Tables allow efficient comparison. Organizing data in a sequence (time) or series (size) can reveal patterns. Students process some data into graphs, providing visual display of numerical data. They also organize data and process them in the science notebook.
Analysis: discussing and writing explanations. The most important part of an active investigation is extracting its meaning. This constructive process involves logic, discourse, and prior knowledge. Students share their explanations for phenomena, using evidence generated during the investigation to support their ideas. They conclude the active investigation by writing in their science notebooks a summary of their learning as well as questions raised during the activity.

Science Notebooks

Research and best practice have led FOSS to place more emphasis on the student science notebook. Keeping a notebook helps students organize their observations and data, process their data, and maintain a record of their learning for future reference. The process of writing about their science experiences and communicating their thinking is a powerful learning device for students. The science-notebook entries stand as credible and useful expressions of learning. The artifacts in the notebooks form one of the core exhibitions of the assessment system.

You will find the duplication masters for grades 1–5 presented in notebook format. They are reduced in size (two copies to a standard sheet) for placement (with glue or tape) into pages in a bound composition book. Full-size duplication masters are also available on FOSSweb. Student work is entered partly in spaces provided on the notebook sheets and partly on adjacent blank pages in the composition book. Look to the chapter in *Teacher Resources* called Science Notebooks in Grades K–2 for more details on how to use a science notebook with FOSS.
Reading in FOSS Science Resources

The FOSS Science Resources books are primarily devoted to expository articles and biographical sketches. FOSS suggests that the reading be completed during language-arts time to connect to the Common Core State Standards for ELA. When language-arts skills and methods are embedded in content material that relates to the authentic experience students have had during the FOSS active learning sessions, students are interested, and they get more meaning from the text material.

Recommended strategies to engage students in reading, writing, speaking, and listening using the articles in the FOSS Science Resources books are included in the flow of Guiding the Investigation. In addition, a library of resources is described in the Science-Centered Language Development chapter in Teacher Resources.

The chapter FOSS and Common Core ELA in Teacher Resources shows how FOSS provides opportunities to develop and exercise the Common Core State Standards for ELA practices through science. A detailed table identifies these opportunities in the three FOSS modules for the first grade.

Engaging in Online Activities through FOSSweb

The simulations and online activities on FOSSweb are designed to support students’ learning at specific times during instruction. Digital resources include streaming videos that can be viewed by the class or small groups. Resources also include virtual investigations and tutorials that students can use to review the active investigations and to support students who need more time with the concepts or who have been absent and missed an active investigation.

The Technology chapter provides details about the online activities for students and the tools and resources for teachers to support and enrich instruction. There are many ways for students to engage with the digital resources—in class as individuals, in small groups, or as a whole class, and at home with family and friends.
Assessing Progress

The FOSS assessment system includes both formative and summative assessments. Formative assessment monitors learning during the process of instruction. It measures progress, provides information about learning, and is predominantly diagnostic. Summative assessment looks at the learning after instruction is completed, and it measures achievement.

Formative assessment in FOSS, called embedded assessment, is an integral part of instruction, and occurs on a daily basis. You observe action during class in a performance assessment or review notebooks after class. Performance assessments look at students’ engagement in science and engineering practices or their recognition of crosscutting concepts. Embedded assessment provides continuous monitoring of students’ learning and helps you make decisions about whether to review, extend, or move on to the next idea to be covered.

Benchmark assessments are short summative assessments given after each investigation. These I-Checks are actually hybrid tools: they provide summative information about students’ achievement, and because they occur soon after teaching each investigation, they can be used diagnostically as well. Reviewing specific items on an I-Check with the class provides additional opportunities for students to clarify their thinking.

The embedded assessments are based on authentic work produced by students during the course of participating in the FOSS activities. Students do their science, and you look at their notebook entries. Bullet points in the Guiding the Investigation section tell you specifically what students should know and be able to communicate.

If student work is incorrect or incomplete, you know that there has been a breakdown in the learning/communicating process. The assessment system then provides a menu of next-step strategies to resolve the situation. Embedded assessment is assessment for learning, not assessment of learning.

Assessment of learning is the domain of the benchmark assessments. Benchmark assessments for grades 1–2 are delivered after each investigation (I-Checks). These assessments can also be used to monitor and adjust instruction based on student understanding.
Taking FOSS Outdoors

FOSS throws open the classroom door and proclaims the entire school campus to be the science classroom. The true value of science knowledge is its usefulness in the real world and not just in the classroom. Taking regular excursions into the immediate outdoor environment has many benefits. First of all, it provides opportunities for students to apply things they learned in the classroom to novel situations. When students are able to transfer knowledge of scientific principles to natural systems, they experience a sense of accomplishment.

In addition to transfer and application, students can learn things outdoors that they are not able to learn indoors. The most important object of inquiry outdoors is the outdoors itself. To today’s youth, the outdoors is something to pass through as quickly as possible to get to the next human–managed place. For many, engagement with the outdoors and natural systems must be intentional, at least at first. With repeated visits to familiar outdoor learning environments, students may first develop comfort in the outdoors, and then a desire to embrace and understand natural systems.

The last part of most investigations is an outdoor experience. Venturing out will require courage the first time or two you mount an outdoor expedition. It will confuse students as they struggle to find the right behavior that is a compromise between classroom rigor and diligence and the freedom of recreation. With persistence, you will reap rewards. You will be pleased to see students’ comportment develop into proper field-study habits, and you might be amazed by the transformation of students with behavior issues in the classroom who become your insightful observers and leaders in the schoolyard environment.

Teaching outdoors is the same as teaching indoors—except for the space. You need to manage the same four core elements of classroom teaching: time, space, materials, and students. Because of the different space, new management procedures are required. Students can get farther away. Materials have to be transported. The space has to be defined and honored. Time has to be budgeted for getting to, moving around in, and returning from the outdoor study site. All these and more issues and solutions are discussed in the Taking FOSS Outdoors chapter in Teacher Resources.
Science-Centered Language Development and Common Core State Standards for ELA

The FOSS active investigations, science notebooks, FOSS Science Resources articles, and formative assessments provide rich contexts in which students develop and exercise thinking and communication. These elements are essential for effective instruction in both science and language arts—students experience the natural world in real and authentic ways and use language to inquire, process information, and communicate their thinking about scientific phenomena. FOSS refers to this development of language process and skills within the context of science as science-centered language development.

In the Science-Centered Language Development chapter in Teacher Resources, we explore the intersection of science and language and the implications for effective science teaching and language development. Language plays two crucial roles in science learning: (1) it facilitates the communication of conceptual and procedural knowledge, questions, and propositions, and (2) it mediates thinking—a process necessary for understanding. For students, language development is intimately involved in their learning about the natural world. Science provides a real and engaging context for developing literacy and language-arts skills identified in contemporary standards for English language arts.

The most effective integration depends on the type of investigation, the experience of students, the language skills and needs of students, and the language objectives that you deem important at the time. The Science-Centered Language Development chapter is a library of resources and strategies for you to use. The chapter describes how literacy strategies are integrated purposefully into the FOSS investigations, gives suggestions for additional literacy strategies that both enhance students’ learning in science and develop or exercise English-language literacy skills, and develops science vocabulary with scaffolding strategies for supporting all learners. We identify effective practices in language-arts instruction that support science learning and examine how learning science content and engaging in science and engineering practices support language development.

Specific methods to make connections to the Common Core State Standards for English Language Arts are included in the flow of Guiding the Investigation. These recommended methods are linked to the CCSS ELA through ELA notes. In addition, the FOSS and the Common Core ELA chapter in Teacher Resources summarizes all of the connections to each standard at the given grade level.
DIFFERENTIATED INSTRUCTION

The roots of FOSS extend back to the mid-1970s and the Science Activities for the Visually Impaired and Science Enrichment for Learners with Physical Handicaps projects (SAVI/SELPH). As those special-education science programs expanded into fully integrated settings in the 1980s, hands-on science proved to be a powerful medium for bringing all students together. The subject matter is universally interesting, and the joy and satisfaction of discovery are shared by everyone. Active science by itself provides part of the solution to full inclusion and provides many opportunities at one time for differentiated instruction.

Many years later, FOSS began a collaboration with educators and researchers at the Center for Applied Special Technology (CAST), where principles of Universal Design for Learning (UDL) had been developed and applied. FOSS continues to learn from our colleagues about ways to use new media and technologies to improve instruction. Here are the UDL principles.

Principle 1. Provide multiple means of representation. Give learners various ways to acquire information and knowledge.

The FOSS Program has been designed to maximize the science-learning opportunities for students with special needs and students from culturally and linguistically diverse origins. FOSS is rooted in a 30-year tradition of multisensory science education and informed by recent research on UDL. Procedures found effective with students with special needs and students who are learning English are incorporated into the materials and strategies used with all students.

FOSS instruction allows students to express their understanding through a variety of modalities. Each student has multiple opportunities to demonstrate his or her strengths and needs. The challenge is then to provide appropriate follow-up experiences for each student. For some students, appropriate experience might mean more time with the active investigations or online activities. For other students, it might mean more experience building explanations of the science concepts orally or in writing or drawing. For some students, it might mean making vocabulary more explicit through new concrete experiences or
through reading to students. For some students, it may be scaffolding their thinking through graphic organizers. For other students, it might be designing individual projects or small-group investigations. For some students, it might be more opportunities for experiencing science outside the classroom in more natural, outdoor environments.

The next-step strategies used during the self-assessment sessions after I-Checks provide many opportunities for differentiated instruction. For more on next-step strategies, see the Assessment chapter.

There are additional strategies for providing differentiated instruction. The FOSS Program provides tools and strategies so that you know what students are thinking throughout the module. Based on that knowledge, read through the extension activities for experiences that might be appropriate for students who need additional practice with the basic concepts as well as those ready for more advanced projects. Interdisciplinary extensions are listed at the end of each investigation. Use these ideas to meet the individual needs and interests of your students. In addition, online activities including tutorials and virtual investigations are effective tools to provide differentiated instruction.

English Learners

The FOSS multisensory program provides a rich laboratory for language development for English learners. The program uses a variety of techniques to make science concepts clear and concrete, including modeling, visuals, and active investigations in small groups at centers. Key vocabulary is usually developed within an activity context with frequent opportunities for interaction and discussion between teacher and student and among students. This provides practice and application of the new vocabulary. Instruction is guided and scaffolded through carefully designed lesson plans, and students are supported throughout. The learning is active and engaging for all students, including English learners.

Science vocabulary is introduced in authentic contexts while students engage in active learning. Strategies for helping all students read, write, speak, and listen are described in the Science-Centered Language Development chapter. There is a section on science-vocabulary development with scaffolding strategies for supporting English learners. These strategies are essential for English learners, and they are good teaching strategies for all learners.
FOSS INVESTIGATION ORGANIZATION

Modules are subdivided into investigations (four in this module). Investigations are further subdivided into three to five parts. Each part of each investigation is driven by a focus question. The focus question, usually presented as the part begins, signals the challenge to be met, mystery to be solved, or principle to be uncovered. The focus question guides students’ actions and thinking and makes the learning goal of each part explicit for teachers. Each part concludes with students recording an answer to the focus question in their notebooks.

The investigation is summarized for the teacher in the At a Glance chart at the beginning of each investigation.

Investigation-specific scientific background information for the teacher is presented in each investigation chapter, organized by the focus questions.

The Teaching Children about section makes direct connections to the NGSS foundation boxes for the grade level—Disciplinary Core Ideas, Science and Engineering Practices, and Crosscutting Concepts. This information is later presented in color-coded sidebar notes to identify specific places in the flow of the investigation where connections to the three dimensions of science learning appear. The Teaching Children about section ends with information about teaching and learning and a conceptual-flow graphic of the content.

The Materials and Getting Ready sections provide scheduling information and detail exactly how to prepare the materials and resources for conducting the investigation.

Teaching notes appear in blue boxes in the sidebars. These notes comprise a second voice in the curriculum—an educative element. The first (traditional) voice is the message you deliver to students. The second educative voice, shared as a teaching note, is designed to help you understand the science content and pedagogical rationale at work behind the instructional scene. ELA Connections boxes provide connections to the Common Core State Standards for English Language Arts.

The Getting Ready and Guiding the Investigation sections have several features that are flagged in the sidebars. These include icons to remind you when a particular pedagogical method is suggested, as well as concise bits of information in several categories.
The **safety** icon alerts you to potential safety issues related to chemicals, allergic reactions, and the use of safety goggles.

The small-group **discussion** icon asks you to pause while students discuss data or construct explanations in their groups.

The **new-word** icon alerts you to a new vocabulary word or phrase that should be introduced thoughtfully.

The **vocabulary** icon indicates where students should review recently introduced vocabulary.

The **recording** icon points out where students should make a science-notebook entry.

The **reading** icon signals when the class should read a specific article in the *FOSS Science Resources* books.

The **technology** icon signals when the class should use a digital resource on FOSSweb.

The **assessment** icons appear when there is an opportunity to assess student progress by using embedded or benchmark assessments. Some are performance assessments—observations of science and engineering practices—indicated by the icon that includes a beaker and ruler.

The **outdoor** icon signals when to move the science learning experience into the schoolyard.

The **engineering** icon indicates opportunities for an experience incorporating engineering practices.

The **math** icon indicates an opportunity to engage in numerical data analysis and mathematics practice.

The **EL note** provides a specific strategy to assist English learners in developing science concepts.

To help with pacing, you will see icons for **breakpoints**. Some breakpoints are essential, and others are optional.
MANAGING THE CLASSROOM

Students in primary grades are usually most comfortable working as individuals with materials. The abilities to share, take turns, and learn by contributing to a group goal are developing but are not reliable as learning strategies all the time. Because of this egocentrism and the need for many students to control materials or dominate actions, the FOSS kit includes a lot of materials. To effectively manage students and materials, FOSS offers some suggestions.

Whole-Class Discussions

FOSS suggests that for introducing investigation sessions and for wrap-ups you gather the class at the rug or other location in the classroom where students can sit comfortably in a large group. They can also turn and talk with a partner before sharing ideas with the class.

Small-Group Centers

Some of the observations and investigations with sound and light can be conducted with small groups at a learning center. For example, working with closed cardboard boxes to find out what you can see with no light in Investigation 4, Part 3, could be conducted at a center. Limit the number of students at the center to six to ten at one time. When possible, each student will have his or her own equipment to work with. In some cases, students will have to share materials and equipment and make observations together. Primary students are good at working together independently.

As one group at a time is working at the center on a FOSS activity, other students will be doing something else. Over the course of an hour or more, plan to rotate all students through the center, or allow the center to be a free-choice station.

When You Don’t Have Adult Helpers

Some parts of investigations work better when there is an aide or a student’s family member available to assist groups with the activity and to encourage discussion and vocabulary development. Investigation 2, Changing Sound, is a good investigation to have another adult to work with half the class during each part. We realize that there are many primary classrooms in which the teacher is the only adult present. You might invite upper-elementary students to visit your class to help with the activities. Remind older students to be guides and to let primary students do the activities themselves.
Managing Materials

The Materials chapter lists the items in the equipment kit and any teacher-supplied materials. It also describes things to do to prepare a new kit and how to check and prepare the kit for your classroom. Individual photos of each piece of FOSS equipment are available for printing from FOSSweb, and can help students and you identify each item.

For whole-class activities, FOSS program designers suggest using a central materials distribution system. You organize all the materials for an investigation at a single location called the materials station. As the investigation progresses, one member of each group gets materials as they are needed, and another returns the materials when the investigation is complete. You place the equipment and resources at the station, and students do the rest. Students can also be involved in cleaning and organizing the materials at the end of a session.

When Students Are Absent

When a student is absent for a session, give him or her a chance to spend some time with the materials at a center. Another student might act as a peer tutor. Allow the student to bring home a FOSS Science Resources book to read with a family member.
SAFETY IN THE CLASSROOM AND OUTDOORS

Following the procedures described in each investigation will make for a very safe experience in the classroom. You should also review your district safety guidelines and make sure that everything you do is consistent with those guidelines. Two posters are included in the kit: Science Safety for classroom use and Outdoor Safety for outdoor activities.

Look for the safety icon in the Getting Ready and Guiding the Investigation sections that will alert you to safety considerations throughout the module.

Safety Data Sheets (SDS) for materials used in the FOSS Program can be found on FOSSweb. If you have questions regarding any SDS, call Delta Education at 1-800-258-1302 (Monday–Friday, 8:00 a.m.–5:00 p.m. ET).

Science Safety in the Classroom

General classroom safety rules to share with students are listed here.

1. Listen carefully to your teacher’s instructions. Follow all directions. Ask questions if you don’t know what to do.
2. Tell your teacher if you have any allergies.
3. Never put any materials in your mouth. Do not taste anything unless your teacher tells you to do so.
4. Never smell any unknown material. If your teacher tells you to smell something, wave your hand over the material to bring the smell toward your nose.
5. Never mix any chemicals unless your teacher tells you to do so.
6. Always wash your hands with soap and warm water after handling chemicals, plants, or animals.
7. Always protect your eyes. Wear safety goggles when necessary. Tell your teacher if you wear contact lenses.
8. Never look directly at the Sun or at the sunlight being reflected off a shiny object.
9. Always wash your hands with soap and warm water after handling chemicals, plants, or animals.
10. Never release any living things into the environment unless your teacher tells you to do so.
11. Clean up your work space after each investigation.
12. Act responsibly during all science activities.

Science Safety

- Listen carefully to your teacher’s instructions. Follow all directions. Ask questions if you don’t know what to do.
- Tell your teacher if you have any allergies.
- Never put any materials in your mouth. Do not taste anything unless your teacher tells you to do so.
- Never smell any unknown material. If your teacher tells you to smell something, wave your hand over the material to bring the smell toward your nose.
- Do not touch your face, mouth, ears, eyes, or nose while working with chemicals, plants, or animals.
- Always look directly at the Sun or at the sunlight being reflected off a shiny object.
- Do not touch any skin-irritating plants in your schoolyard or in the environment.
- Slowly walk away from it. Tell your teacher if you are stung or bitten.
- If a stinging insect is near you, stay calm and slowly walk away from it. Tell your teacher if you are stung or bitten.
- Do not touch any skin-irritating plants in your schoolyard or in the environment.
- Always wash your hands with soap and warm water after handling chemicals, plants, or animals.
- Never release any living things into the environment unless your teacher tells you to do so.
- Always wash your hands with soap and warm water after handling chemicals, plants, or animals.
SCHEDULING THE MODULE

Below is a suggested teaching schedule for the module. The investigations are numbered and should be taught in order, as the concepts build upon each other from investigation to investigation. We suggest that a minimum of 8 weeks be devoted to this module.

Active-investigation (A) sessions include hands-on work with materials and tools, active thinking about experiences, small-group discussion, writing in science notebooks, and learning new vocabulary in context.

Reading (R) sessions involve reading FOSS Science Resources articles. Reading can be completed during language-arts time to make connections to Common Core State Standards for ELA.

During Wrap-Up/Warm-Up (W) sessions, students share notebook entries and engage in connections to Common Core State Standards for ELA. These sessions can also be completed during language-arts time.

I-Checks are short summative assessments at the end of each investigation. See the Assessment chapter for more details.

Scheduling the Module

<table>
<thead>
<tr>
<th>Week</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>START Inv. 1 Part 1</td>
<td>A</td>
<td>R/W</td>
<td>START Inv. 1 Part 2</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>START Inv. 1 Part 3</td>
<td>A</td>
<td>I-Check 1</td>
<td>START Inv. 2 Part 1</td>
<td>A/W</td>
</tr>
<tr>
<td>3</td>
<td>START Inv. 2 Part 2</td>
<td>A</td>
<td>R/W</td>
<td>START Inv. 2 Part 3</td>
<td>A/W</td>
</tr>
<tr>
<td>4</td>
<td>START Inv. 2 Part 4</td>
<td>A</td>
<td>A/W</td>
<td>I-Check 2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>START Inv. 3 Part 1</td>
<td>A/W</td>
<td></td>
<td>START Inv. 3 Part 2</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>START Inv. 3 Part 3</td>
<td>A</td>
<td></td>
<td>I-Check 3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>START Inv. 4 Part 1</td>
<td>A/W</td>
<td></td>
<td>START Inv. 4 Part 2</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>START Inv. 4 Part 3</td>
<td>A</td>
<td>R/W</td>
<td>START Inv. 4 Part 4</td>
<td>A</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I-Check 4</td>
</tr>
</tbody>
</table>

© Copyright The Regents of the University of California Berkeley
Not for resale, redistribution, or use other than classroom use without further permission. www.fossweb.com
FOSS CONTACTS

General FOSS Program information
www.FOSSweb.com
www.DeltaEducation.com/FOSS

Developers at the Lawrence Hall of Science
FOSS@berkeley.edu

Customer service at Delta Education
www.DeltaEducation.com/contact.aspx
Phone: 1-800-258-1302, 8:00 a.m.–5:00 p.m. ET

FOSSmap (online component of FOSS assessment system)
fossmap.com

FOSSweb account questions/help logging in
School Specialty Online Support
loginhelp@schoolspecialty.com
Phone: 1-800-513-2465, 8:30 a.m.–6:00 p.m. ET
5:30 a.m.–3:00 p.m. PT

FOSSweb tech support
support@FOSSweb.com

Professional development
www.FOSSweb.com/Professional-Development

Safety issues
www.DeltaEducation.com/MSDS.shtml
Phone: 1-800-258-1302, 8:00 a.m.–5:00 p.m. ET
For chemical emergencies, contact Chemtrec 24 hours a day.
Phone: 1-800-424-9300

Sales and replacement parts
www.DeltaEducation.com/BuyFOSS
Phone: 1-800-338-5270, 8:00 a.m.–5:00 p.m. ET